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Abstract
Background For a treatment decision of unruptured cerebral aneurysms, physicians and patients need to weigh the risk of
treatment against the risk of hemorrhagic stroke caused by aneurysm rupture. The aim of this study was to externally evaluate
a recently developed statistical aneurysm rupture probability model, which could potentially support such treatment decisions.
Methods Segmented image data and patient information obtained from two patient cohorts including 203 patients with 249
aneurysms were used for patient-specific computational fluid dynamics simulations and subsequent evaluation of the statistical
model in terms of accuracy, discrimination, and goodness of fit. The model’s performance was further compared to a similarity-
based approach for rupture assessment by identifying aneurysms in the training cohort that were similar in terms of hemody-
namics and shape compared to a given aneurysm from the external cohorts.
Results When applied to the external data, the model achieved a good discrimination and goodness of fit (area under the receiver
operating characteristic curve AUC = 0.82), which was only slightly reduced compared to the optimism-corrected AUC in the
training population (AUC = 0.84). The accuracy metrics indicated a small decrease in accuracy compared to the training data
(misclassification error of 0.24 vs. 0.21). The model’s prediction accuracy was improved when combined with the similarity
approach (misclassification error of 0.14).
Conclusions The model’s performance measures indicated a good generalizability for data acquired at different clinical institu-
tions. Combining the model-based and similarity-based approach could further improve the assessment and interpretation of new
cases, demonstrating its potential use for clinical risk assessment.
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Introduction

Intracranial aneurysms [IAs] are a common vascular disease
occurring in about 2–3% of the population [26, 33]. Whereas
most IAs remain asymptomatic and never rupture, the event of
aneurysm rupture results in hemorrhagic stroke, which is re-
lated to highmortality, morbidity, and, consequently, a notable
economic burden [27, 34]. Nowadays, IAs are increasingly
diagnosed incidentally [11]. In these cases, physicians need
to weigh the natural risk of aneurysm rupture, which is rela-
tively low at 1% per year [17, 18, 36], against the risks of
treatment and their complications when deciding on a treat-
ment strategy.

Several risk factors for IA rupture have previously been
identified, including molecular, genetic, morphological, and
hemodynamic parameters [19]. While these findings indicate
the importance of considering various types of risk factors for
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rupture risk assessment, current treatment decisions are main-
ly based on aneurysm size, location in the cerebral vascula-
ture, and patient-related factors [13, 29, 30].

We recently developed a probability model for aneurysm
rupture combining morphological, hemodynamic, and
patient-related parameters [10]. The internal validation of the
model with 1631 IAs that were used for model training indi-
cated a good predictive performance. As a subsequent step,
the aim of the current study was to externally validate the
model with 249 aneurysms from two different patient cohorts.
The probability model-based approach was further compared
to rupture assessment by identifying Bsimilar cases^ in terms
of aneurysm location, morphology, and flow characteristics in
the training dataset.

Methods

Patient and image data

The rupture probability model has been previously developed
using cross-sectional image and patient data from 1061 pa-
tients with 1631 aneurysms obtained from hospitals in the
USA, Japan, and Colombia [10]. For the external evaluation
of this model, cross-sectional data of two patient cohorts, the
AneuRisk dataset1 [28] and datasets from the AneuX project,
which had not been used for model training, were used. Both
datasets included segmented 3D geometries that had been de-
rived from 3D rotational angiography (3DRA) images as well
as patient data of patients who underwent cerebral angiogra-
phy for cerebral aneurysm assessment in the Neuroradiology
Division of the Niguarda Ca’ Granda Hospital in Milan
(AneuRisk) and at the Geneva University Hospitals (HUG,
Hôpitaux Universitaires Genève, AneuX).2 In total, 203 pa-
tients with 249 IAs (66 ruptured, 183 unruptured) were includ-
ed. Multiple aneurysms were present in 35 patients (17.2%).

Table 1 summarizes the patient characteristics for both ex-
ternal patient cohorts and the cohort used for training the
model. The mean age of the patients in the three cohorts was
56, 54, and 55 years for the training data, AneuRisk, and
AneuX, respectively (p = 0.314, ANOVA). Both for the train-
ing population and the AneuRisk data, the majority of the
aneurysms was located at the internal carotid artery (ICA,
39% and 32%, respectively), whereas most of the AneuX
IAs were located at the middle cerebral artery (MCA, 32%).
Figure 1 shows the relative distribution of IAs by aneurysm
location for the three cohorts.

Hemodynamic modeling and shape characterization

Computational fluid dynamics (CFD) simulations and the
quantitative characterization of aneurysm morphology require
3D geometries of the cerebral aneurysm(s) and surrounding
vasculature that are extracted from 3D medical imaging data
by means of vessel lumen segmentation. The images of the
training data had been segmented using in-house software
with a thresholding-based approach [10]. The AneuRisk data
were segmented using the BVascular Modeling ToolKit^
(VMTK) with a gradient-driven level set approach [24]. For
the AneuX data, geodesic active regions method [14] integrat-
ed in the @neuFuse software [32] as well as a level set–based
approach implemented in Matlab were applied.

Using the segmented 3D aneurysm geometries, we per-
formed CFD simulations as previously described for the
training data [10]. Briefly, unstructured grids were automat-
ically generated using tetrahedral elements with a maximum
element size of 0.2 mm. For numerically solving the un-
steady Navier-Stokes equations, an in-house finite element
solver with a fully implicit scheme was used [3]. Vessel
walls were modeled as rigid and blood was represented
as a Newtonian fluid with a density of 1.0 g/cm3 and
viscosity of 0.04 Poise. For the inflow boundary conditions,
a flow waveform obtained from a healthy subject was
scaled to the area of the inflow artery using a power law
[4]. Outflow boundary conditions were set as pressure and
flow outlets. Two cardiac cycles with 100 time steps per
cycle, assuming a heart rate of 60 beats per minute, were
computed and the results of the second cycle were used for
subsequent hemodynamic characterization.

Next, the hemodynamic and morphological parameters of
the aneurysm rupture probability model were automatically
computed based on the CFD solutions as well as the 3D ge-
ometries as previously described [10].

Model evaluation

The aneurysm rupture probability model had been developed
using logistic group lasso regression [10]. To evaluate it, the
linear predictors and predicted probabilities of being ruptured
were computed for the AneuRisk and AneuX IAs (test IAs)
based on the model coefficients [10]. Subsequently, the
model’s discrimination as well as goodness of fit was assessed
by the area under the receiver operating characteristic (ROC)
curve (AUC) and calibration plots. For the latter, a loess
smoother with a span parameter of 0.75 was used as part of
the visualization [1]. Confidence intervals of the AUC were
estimated based on 1000 bootstrap repetitions. To assess the
accuracy of the model in terms of true positive rate (TPR),
false positive rate (FPR), positive predictive value (PPV or
precision), and NPV (negative predictive value), a threshold
for classification of an IA as ruptured was selected as the

1 http://ecm2.mathcs.emory.edu/aneuriskweb/index
2 The AneuX dataset was processed under supervision of Vitor Mendes
Pereira, Philippe Bijlenga, Rafik Ouared, Norman Juchler, and Sven Hirsch.
It is maintained within the scope of the SystemsX.ch project AneuX.
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probability corresponding to the point on the ROC curve with
the minimum distance to the point (0,1). For all AneuRisk and
AneuX cases, information for all variables of the model was
available (no missing data). All statistical analyses were per-
formed with scripts written in the R language [25].

Rupture prediction based on similarities
between aneurysms

We compared the accuracy of the rupture model in the external
data to a more directly data-based approach that uses

Fig. 1 Distribution ruptured (dark colors) and unruptured (light colors)
aneurysms by location and patient cohort. To facilitate a comparison
between the different cohorts, all absolute numbers of aneurysms per
location were normalized by the total number of aneurysms of the

respective cohort. The shown numbers on top of the bars refer to the
rupture rates for the corresponding location in percent. For the
definition of the aneurysm locations, see the description of the model’s
parameters in [10]

Table 1 Comparison of patient cohorts used for model training and model evaluation

Training population AneuRisk AneuX

Number of patients 1061 99 104

Number of aneurysms (ruptured/unruptured) 1631 (492R/1139U) 113 (44R/69U) 136 (22R/114U)

Patient age (mean ± sd) (of 1065 patients with known age) 56.25 ± 13.77 54.36 ± 13.58 54.99 ± 13.70

Patients with multiple aneurysms 328 13 22

Number of patients with SAH 490 44 22

Distribution by location ACA 57 (3.49%) 20R/37U 1 (0.89%) 1R/0U 4 (2.94%) 1R/3U

ACOM 226 (13.86%) 148R/78U 23 (20.35%) 17R/6U 22 (16.18%) 6R/16U

BA 106 (6.50%) 35R/71U 7 (6.19%) 4R/3U 7 (5.15%) 3R/4U

ICA 636 (38.99%) 64R/572U 36 (31.86%) 3R/33U 41 (30.15%) 2R/39U

MCA 310 (19.01%) 82R/228U 28 (24.78%) 9R/19U 43 (31.62%) 5R/38U

PCOM 260 (15.94%) 127R/133U 18 (15.93%) 10R/8U 15 (11.03%) 4R/11U

VA 36 (2.21%) 16R/20U 0 (0%) 0R/0U 4 (2.94%) 1R/3U

Gender 802 F, 259 M 62F, 37M 82F, 22M

ACA anterior cerebral artery, ACOM anterior communicating artery, BA basilar artery, ICA internal carotid artery, MCA middle cerebral artery, PCOM
posterior communicating artery, VA vertebral artery; R and U refer to the number of ruptured and unruptured aneurysms, respectively
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aneurysms from the training cohort with similar characteristics
compared to the test IAs. For this alternative approach, the
rupture status of the test IAs was defined as the most frequent
rupture status (Bmajority vote^) of all Bsimilar^ aneurysms
selected from the training data set. Here, aneurysms situated
at the same location in the cerebral vasculature as well as
having comparable values of non-sphericity index (NSI),
maximum oscillatory shear index (OSImax), and aneurysm
size were considered as similar. The first three parameters
(location, NSI, OSImax) capture anatomic, morphologic,
and hemodynamic characteristics of the aneurysm and were
identified as important variables for identifying an aneurysm’s
rupture status in our previous study [10]. We further included
aneurysm size as a selection criterion to identify aneurysms
that are at a similar phase of their evolution. Starting with a
threshold of 5%, aneurysms at the same location and having a
value of the selected variables within a deviation of this
threshold were defined as matching cases. If no similar case
was identified, the deviation threshold was increased in steps
of 5% until reaching a maximum of 200% (10%, 15%, 20%,
…, 200%). If for a test IA and a specific threshold, the number
of identified similar ruptured IAs was identical to the number
of similar unruptured IAs (ties); the rupture status of the test
IAwas defined as the one of the similar case with the closest
value of aneurysm size. The scheme of this Bsimilarity-based
approach^ is illustrated in Fig. 2.

Results

Model evaluation

When applying the model to the test data (AneuRisk and
AneuX combined), the AUC was 0.82 (mean and 95% boot-
strap confidence interval 0.8245, [0.8227, 0.8263], see Fig. 3,
left for the ROC curve). Evaluated separately in the two test
cohorts, the AUC for the AneuRisk data was 0.82 and for
AneuX 0.86 (mean and confidence intervals of 0.8202
[0.8177, 0.8227] and 0.8666 [0.8645, 0.8686]). The calibra-
tion plot (Fig. 3, right) indicates an appropriate goodness of fit
of the model both in the training and testing population quan-
tified by a calibration slope and intercept of 1.12 and − 0.11,
respectively, for the testing data. Based on the ROC curve, a
threshold of 0.316 was selected to classify the IAs of the
testing population as ruptured. For this threshold, the TPR,
FPR, and PPV were 0.77, 0.24, and 0.54, respectively (see
Table 2). The relative number of misclassified IAs was 0.24.
When applying the threshold that was determined based on
the training data to the test data (0.323), the TPR, FPR, and
misclassification error were slightly decreased to 0.76, 0.23,
and 0.23, whereas the PPV remained constant at 0.54 (see
Table 2). The ROC curves, calibration plots, and accuracy
metrics for the AneuRisk and AneuX data separately are shown
in Fig. 1 and Table 1 in the Suppl. Data.

Fig. 2 Scheme of the similarity-based approach for estimating an aneu-
rysm’s rupture status. For a new case, aneurysms from our database with
the same location and values of aneurysm size (Asize), maximum OSI
(OSImax), and non-sphericity index (NSI) within a 5% range of the
values of the new case were selected. If no aneurysms fulfilling these
criteria were identified, the range was increased by five percentage points

until at least one aneurysm was found or the percent range reached 200%.
If more than one aneurysm was identified for a specific range, the major-
ity vote was taken. In case of the same number of ruptured and unruptured
IAs, the rupture status of the aneurysmwith the closest aneurysm size was
selected
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Similar cases based on selected variables

For all 249 IAs of the test cohorts, Bsimilar IAs^were identified
in the training population within a range of 115% of deviation
of the values for aneurysm size, NSI, and OSImax. Using the
stepwise approach described above (increasing the deviation
threshold until matching cases are found), on average, 1.79
similar IAs in the training cohort per queried IAwere selected.
Based on the majority vote, the rupture status of 186 of the 249
IAs was correctly classified (74.7%). The TPR, FPR, and PPV
for this approach were 0.55, 0.18, and 0.52 (see Table 2).

Combination of model and similarity-based approach

To evaluate whether combining the predictions of the model
and the approach based on the similar cases could improve the
overall accuracy of the predictions, the subset of 176 IAs with
the same predicted rupture status based on the majority vote of
the similar cases and classification with the model was further
analyzed. Here, for determining the rupture status based on the
model, the Boptimal threshold^ determined in the training data
of 0.323 was used. Of those 176 cases, 152 were correctly
classified (86.4%). The TPR, FPR, and PPV were 0.79,
0.12, and 0.61, respectively (see Table 2).

Discussion

The treatment decision of incidental IAs poses a challenge to
physicians and patients since the risk of a devastating hemor-
rhagic stroke needs to be weighed against the risk of

treatment. A statistical rupture prediction model could poten-
tially support decision-making for these cases. Recently, we
presented a rupture probability model based on a large patient
cohort including patient-related, hemodynamic, and morpho-
logical information [10]. The model showed good discrimina-
tion and calibration in the training data (internal validation).
Our current study assessed the model’s performance with data
of aneurysms that have not been used for model training (ex-
ternal validation). The results showed a good predictive per-
formance of the model in the external data, indicating that the
model remains valid with new data.

Model performance

In this external validation, the model’s discrimination in terms
of AUC was reduced to 0.82 compared to the AUC of 0.86 in
the training data. The AUC was only slightly lower than the
AUC in the training data after correction for the estimated op-
timism of 0.84, indicating reasonable optimism estimation. The
further reduction of the AUC could potentially be explained by
differences in the patient populations in the training compared
to the test data. Interestingly, the AUC was higher when apply-
ing the model to the AneuX data (AUC = 0.86) compared to
both the AneuRisk (0.82) and the combined data (0.82). The
model’s calibration was also only slightly poorer for the test
data as illustrated by the larger deviation of the loess smoother
from the 45° line in the calibration plot (see Fig. 3).

With respect to the model’s accuracy, when using the
Boptimal threshold^ based on the ROC curve of the test data
for classifying an IA as ruptured or unruptured, the TPR
remained the same compared to the TPR for the training data
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Fig. 3 ROC curves and calibration plots for the training data (solid line)
and combined AneuX and AneuRisk data (Btest,^ dotted line). (Left)
ROC curves visualize the discriminative ability of the model. The filled
circles on the ROC curve indicate the values corresponding to the
Boptimal threshold^ determined for the respective data. (Right)
Calibration plots allow to assess the goodness-of-fit of the model. The

circles at the top and bottom show the observed data. The triangles and
squares show the observed outcomes of the training and test populations
grouped by deciles, which are also represented by the loess smoother with
the solid and dotted line. For a perfectly calibrated fit, all triangles/squares
and the loess smoother would lie on the 45° line
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(0.77) whereas the PPV slightly decreased and the FPR and
misclassification error increased. Since for a new case it would
not be possible to determine an Boptimal threshold^ based on
the new case’s Bpopulation,^ we also applied the threshold
computed based on the training data (0.323) to the test data.
The accuracy measures remained mainly the same, indicating
that this threshold could also be applied for classifying new
IAs. Overall, the presented measures indicated a reasonable
accuracy of the model. At the same time, it is important to bear
in mind that the predicted probability at which a physician
decides to treat the patient depends on various factors related
to the patient and treating physician. Therefore, accuracymea-
sures based on fixed thresholds (like the Boptimal^ one based
on the ROC curve) provide only approximate information on
the model’s predictive performance in terms of (mis-)classifi-
cation of cases in a clinical setting.

The PHASES score [13] uses patient-specific information,
aneurysm size, and aneurysm location to estimate a patient’s
5-year aneurysm rupture risk. Its internal and external valida-
tion resulted in AUCs of 0.82 and 0.66, respectively [2, 13].
Our results indicate that incorporating hemodynamic and mor-
phological information can potentially improve aneurysm risk
assessment. The lack of some patient-related information used
in the PHASES score (population, hypertension, and earlier
SAH from another aneurysm) for the data used in the

presented study did not allow for a direct comparison of the
performances of our model and the PHASES score, which is
therefore planned for future work.

To enable and encourage an evaluation of our model by
other research groups as well as a comparison of the results
with the findings presented here, this study follows the
TRIPOD statement [9].

Data-driven risk assessment

Our results indicate that applying the statistical model can
potentially provide guidance for physicians who need to de-
cide whether to treat an aneurysm or conservatively observe it.
Nevertheless, the interpretation of such a model can be diffi-
cult. Therefore, we implemented a data-driven Bsimilarity-
based^ approach to provide visual support for interpreting
the model’s results as well as to compare the performance of
this approach with the performance of the model. For each test
IA, we identified IAs in our (training) data with the same
location and similar values of NSI, OSImax, and aneurysm
size. Our results showed that when using this approach for
rupture prediction, its performance was only slightly worse
compared to applying the rupture probability model in terms
of the misclassification error (0.25 vs. 0.24). This indicates
that the important variables as identified based on cross-

Table 2 Accuracy measures for
the model applied to the training
and testing populations for given
threshold (thresholdsmarked with
an asterisk indicate are Boptimal
threshold^ based on the ROC
curve of the given dataset) as well
as for the similarity-based
approach

Data Threshold TPR FPR PPV NPV Misclassification
error

Model Training 0.323* 0.77 0.21 0.62 0.89 0.21

Test 0.316* 0.77 0.24 0.54 0.90 0.24

Test 0.323 0.76 0.23 0.54 0.90 0.23

Similar cases Test – 0.55 0.18 0.52 0.83 0.25

Model + similar cases 176 IAs of test
population

0.323 0.79 0.12 0.61 0.95 0.14

TPR ratio of true to all positives (= sensitivity), FPR ratio of false positives to all negatives (= 1-specificity), PPV
(positive predictive value = precision) = ratio of true positives to number of true and false positives,NPV (negative
predictive value) = ratio of true negatives to number of true and false negatives, misclassification error = number
of incorrect classifications divided by the sample size

Table 3 Values of selected
variables and predicted
probabilities of being ruptured
based on the statistical model for
the IAs illustrated in Figs. 4 and 5

Case Population Asize [cm] Location NSI OSImax Pred. Prob Rupture status

a Test 1.0383 ACOM 0.3924 0.3391 0.9121 R

b Training 0.9753 ACOM 0.3471 0.3752 0.8752 R

c Test 1.2542 ACOM 0.3574 0.2705 0.9126 R

d Training 0.9589 ACOM 0.3484 0.2694 0.9122 R

e Test 0.3302 ICA-CAV 0.1871 0.0372 0.0227 U

f Training 0.2965 ICA-CAV 0.2097 0.0373 0.0738 U

g Test 1.6820 ICA-OPH 0.1871 0.4206 0.0154 U

h Training 1.5441 ICA-OPH 0.1947 0.4021 0.0562 U

ACOM anterior communicating artery, ICA-CAV cavernous sinus of the internal carotid artery, ICA-OPH oph-
thalmic segment of the internal carotid artery
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validation in the training data can be used to identify similar
aneurysms with identical rupture status.

A total of 176 IAs were classified as either ruptured or
unruptured by both the statistical model and the similarity-
based approach. Of those 176 cases, only 24 were
misclassified (13.64%, see Table 2) compared to 24% of mis-
classification obtained for all the 249 cases when using the
model alone. Hence, the similarity-based approach could be
used to provide additional information about a case and facil-
itate the interpretation of the given parameters by visualizing
the identified similar IA.

Of the 24 misclassified cases, seven aneurysms were rup-
tured, but misclassified as unruptured. In these cases, the mod-
el clearly failed to identify the correct rupture status. The re-
maining 17 cases were unruptured, but misclassified as rup-
tured. It is possible that these unruptured aneurysms were at
higher risk of future rupture, but no data was available to
evaluate this hypothesis. Two examples of misclassified IAs
are illustrated in Fig. 2 and Table 2 in the Suppl. Data.

The shape and hemodynamic environment of four example
IAs from the AneuRisk and AneuX data and their identified
similar IAs from the training population are illustrated in
Figs. 4 and 5. The IAs in Fig. 4 are ruptured and have—in
accordance with their rupture status—high predicted probabil-
ities of being ruptured (> 91% for the test cases, > 89% for the
corresponding similar IAs). Furthermore, they are similar in
shape and exposed to a comparable flow environment (indi-
cated by their wall shear stress distribution and stream lines).
This also holds for the four IAs illustrated in Fig. 5, which are
unruptured aneurysms with low predicted probabilities (< 3%
for the test cases, < 8% for the corresponding training IAs).

For the classification of new IAs purely using the
similarity-based approach, the TPR was relatively low
(0.55). Moreover, the identification of similar cases might
not be possible for all future IAs given their specific shape,
size, or hemodynamic environment. Therefore, we suggest
using primarily the statistical rupture probability model for
rupture risk assessment and the identification of similar cases
to obtain additional information (e.g., confirm a high rupture
risk if all the similar IAs are ruptured) as well as to illustrate
the case and facilitate the interpretation of the predicted risk.

Clinical considerations

The characterization of an IA in terms of shape and hemody-
namic environment based on angiographic images requires as
a first step the segmentation of the IA and the surrounding
vasculature in the image. In the presented study, the segmen-
tation of the IAs from the external populations (AneuRisk and
AneuX) was performed by independent researchers using dif-
ferent segmentation tools compared to the segmentation of the
training data. The good performance of our model in the two
test cohorts indicates that the results of applying the model do
not strongly depend on the image segmentation step. This
aspect is important since image segmentation typically in-
volves manual work and hence (depending on the amount of
required manual work by the specific tool/algorithm) is to
some extent user-dependent. The subsequent CFD simula-
tions necessary for a hemodynamic characterization can be
largely automatized. Hence, our results suggest that the model
could be applied in a clinical setting even if segmentation

Fig. 4 Wall shear stress distribution (top panel) and streamlines (bottom)
at half of the cardiac cycle of four ruptured IAs with high probabilities of
being ruptured based on the model. The shown IAs from training data

were identified as similar cases for the respective AneuRisk or AneuX
case. The predicted probabilities and values of selected variables for these
cases are shown in Table 3
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requires some manual input and is performed by different
users.

Particularly for follow-up observations, IAs are routinely
assessed by means of MR angiography (MRA) or CT angiog-
raphy (CTA). Whereas the training and test datasets for the
presented study were based on 3DRA data, segmentation of
IAs from CTA and MRA images is feasible as well [37, 38].
Hence, the model could also be applied for those cases.
Moreover, fully automated image segmentation for IA assess-
ment will likely be possible in future, thus facilitating the
model’s application in a clinical setting [38].

When applying the statistical model for aneurysm risk as-
sessment in clinical practice, it is important to consider that the
current model was developed using cross-sectional data.
Therefore, it gives the probability of being ruptured of a given
aneurysm. However, based on the assumption that high-risk
aneurysms resemble those that have already ruptured [8], this
model could also be useful for aneurysm rupture risk assess-
ment. To evaluate the validity of the model for this applica-
tion, the assessment of the model’s performance with longitu-
dinal data is an essential next step and is planned for future
work.

Current treatment decisions of incidental aneurysms
are largely influenced by the aneurysm size [29, 30].
Whereas small aneurysms (< 5 mm) are candidates for
conservative follow-up observations, larger aneurysms
often get treated [12]. Our statistical model might there-
fore be of use especially for the assessment of small
aneurysms. The model was developed using aneurysms
within a large size range (1.1–39.3 mm). A model con-
sidering only small aneurysms could potentially improve

risk assessment for this subgroup of IAs. At the same
time, the Bgeneral model^ could be applied to larger
aneurysms as well, aiming at identifying larger low-
risk aneurysms that do not require treatment and thus
potentially reducing overtreatment [15].

Besides the parameters included in the aneurysm rupture
probability model, several other risk factors have been asso-
ciated with aneurysm rupture. As external risk factors,
smoking, hypertension, and a previous SAH have been related
to an increased aneurysm rupture risk [13, 20–22].
Considering these factors could further improve the risk as-
sessment. Moreover, the presence of multiple aneurysms is
often considered as a risk factor, although currently, this asso-
ciation is not clear in the literature [16]. Irregular shape and
particularly the presence of blebs are related to a higher risk of
rupture [23]. While the evaluated model does not use the pres-
ence of blebs as a parameter, the combination of various shape
indexes provides information about the irregularity of the an-
eurysm shape and potentially also indirectly about the pres-
ence of blebs.

Finally, it is important to mention that remodeling of
the aneurysm wall eventually leads to its rupture.
Especially the infiltration of the wall with inflammatory
cells, particularly macrophages, seems to play an impor-
tant role in aneurysm growth and rupture [7, 31]. Those
aspects were not directly included in the evaluated risk
assessment tool and should be taken into account when
assessing an aneurysm’s rupture risk. At the same time,
flow parameters are associated with changes in the ves-
sel wall [6]. Besides, the presence of blebs might pro-
vide information about the wall properties [5]. Hence,

Fig. 5 Wall shear stress distribution (top panel) and streamlines (bottom)
at half of the cardiac cycle of four unruptured IAs with low probabilities
of being ruptured based on the model. The shown IAs from training data

were identified as similar cases for the respective AneuRisk or AneuX
case. The predicted probabilities and values of selected variables for these
cases are shown in Table 3
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aneurysm wall properties could be reflected to some
extent in the computed hemodynamic and morphological
parameters.

Limitations

In the present study, we used aneurysm data collected from two
European hospitals to evaluate our model that had been devel-
oped using data mainly from hospitals in the USA. Some stud-
ies indicate that Finish and Japanese populations have a higher
risk of IA rupture compared to other populations [13, 35].
Consequently, the model’s performance could be different in
test data coming from these two populations. Future work
therefore will aim at evaluating the model with such data.

The external data that were used for model evaluation are
subject to the same selection bias as for the training popu-
lation [10]. Only patients that underwent cerebral angiogra-
phy for aneurysm assessment were considered, whereas pa-
tients that deceased before reaching the hospital and those
who only underwent CT or MR angiography could not be
included in this study. It is planned to extend the database
and thus the population for model training based on MRA
and CTA data in the future to address this limitation.

Conclusion

The developed aneurysm rupture probability model demon-
strated a good predictive performance in two external patient
cohorts, indicating the potential for its application to new clin-
ical aneurysm cases. Themodel’s prediction and interpretation
could further be improved by implementing an approach
based on identifying similar IAs from the training database.
Future work will include a validation of the model with lon-
gitudinal data and translating the risk assessment approach to
the clinical practice.
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