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Abstract

Background: For a treatment decision of unruptured cerebral aneurysms, physicians and patients 

need to weigh the risk of treatment against the risk of hemorrhagic stroke caused by aneurysm 

rupture. The aim of this study was to externally evaluate a recently developed statistical aneurysm 

rupture probability model, which could potentially support such treatment decisions.

Methods: Segmented image data and patient information obtained from two patient cohorts 

including 203 patients with 249 aneurysms were used for patient-specific computational fluid 

dynamics simulations and subsequent evaluation of the statistical model in terms of accuracy, 

discrimination, and goodness of fit. The model’s performance was further compared to a 

similaritybased approach for rupture assessment by identifying aneurysms in the training cohort 

that were similar in terms of hemodynamics and shape compared to a given aneurysm from the 

external cohorts.

Results: When applied to the external data, the model achieved a good discrimination and 

goodness of fit (area under the receiver operating characteristic curve AUC=0.82), which was only 

slightly reduced compared to the optimism-corrected AUC in the training population (AUC=0.84). 

The accuracy metrics indicated a small decrease in accuracy compared to the training data 

(misclassification error of 0.24 vs. 0.21). The model’s prediction accuracy was improved when 

combined with the similarity approach (misclassification error of 0.14).

Conclusions: The model’s performance measures indicated a good generalizability for data 

acquired at different clinical institutions. Combining the model-based and similarity-based 
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approach could further improve the assessment and interpretation of new cases, demonstrating its 

potential use for clinical risk assessment.
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Introduction

Intracranial aneurysms [IAs] are a common vascular disease occurring in about 2–3 percent 

of the population [25, 33]. Whereas most IAs remain asymptomatic and never rupture, the 

event of aneurysm rupture results in hemorrhagic stroke, which is related to high mortality, 

morbidity, and, consequently, a notable economic burden [26, 34]. Nowadays, IAs are 

increasingly diagnosed incidentally [11]. In these cases, physicians need to weigh the natural 

risk of aneurysm rupture, which is relatively low at 1% per year [17, 31, 36], against the 

risks of treatment and their complications when deciding on a treatment strategy.

Several risk factors for IA rupture have previously been identified, including molecular, 

genetic, morphological, and hemodynamic parameters [18]. While these findings indicate 

the importance of considering various types of risk factors for rupture risk assessment, 

current treatment decisions are mainly based on aneurysm size, location in the cerebral 

vasculature, and patient-related factors [13, 28, 29].

We recently developed a probability model for aneurysm rupture combining morphological, 

hemodynamic, and patient-related parameters [10]. The internal validation of the model with 

1,631 IAs that were used for model training indicated a good predictive performance. As a 

subsequent step, the aim of the current study was to externally validate the model with 249 

aneurysms from two different patient cohorts. The probability model-based approach was 

further compared to rupture assessment by identifying “similar cases” in terms of aneurysm 

location, morphology and flow characteristics in the training dataset.

Methods

Patient and image data

The rupture probability model has been previously developed using cross-sectional image 

and patient data from 1,061 patients with 1,631 aneurysms obtained from hospitals in the 

US, Japan, and Colombia [10]. For the external evaluation of this model, cross-sectional data 

of two patient cohorts, the AneuRisk dataset1 [27] and datasets from the AneuX project, 

which had not been used for model training, were used. Both datasets included segmented 

3D geometries that had been derived from 3D rotational angiography (3DRA) images as 

well as patient data of patients who underwent cerebral angiography for cerebral aneurysm 

assessment in the Neuroradiology Division of the Niguarda Ca’ Granda Hospital in Milan 

(AneuRisk) and at the Geneva University Hospitals (HUG, Hôpitaux Universitaires Genève, 

1http://ecm2.mathcs.emory.edu/aneuriskweb/index
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AneuX)2. In total, 203 patients with 249 IAs (66 ruptured, 183 unruptured) were included. 

Multiple aneurysms were present in 35 patients (17.2%).

Tab. 1 summarizes the patient characteristics for both external patient cohorts and the cohort 

used for training the model. The mean age of the patients in the three cohorts was 56, 54, 

and 55 years for the training data, AneuRisk, and AneuX, respectively (p=0.314, ANOVA). 

Both for the training population and the AneuRisk data, the majority of the aneurysms was 

located at the internal carotid artery (ICA, 39% and 32%, respectively), whereas most of the 

AneuX IAs were located at the middle cerebral artery (MCA, 32%). Fig. 1 shows the 

relative distribution of IAs by aneurysm location for the three cohorts.

Hemodynamic modeling and shape characterization

Computational fluid dynamics (CFD) simulations and the quantitative characterization of 

aneurysm morphology require 3D geometries of the cerebral aneurysm(s) and surrounding 

vasculature that are extracted from 3D medical imaging data by means of vessel lumen 

segmentation. The images of the training data had been segmented using in-house software 

with a thresholding-based approach [10]. The AneuRisk data were segmented using the 

“Vascular Modeling ToolKit” (VMTK) with a gradientdriven level-set approach [23]. For 

the AneuX data, a geodesic active regions method [14] integrated in the @neuFuse software 

[32] as well as a level-set based approach implemented in Matlab were applied.

Using the segmented 3D aneurysm geometries, we performed CFD simulations as 

previously described for the training data [10]. Briefly, unstructured grids were 

automatically generated using tetrahedral elements with a maximum element size of 0.2 

mm. For numerically solving the unsteady Navier-Stokes equations, an in-house finite 

element solver with a fully implicit scheme was used [3]. Vessel walls were modeled as rigid 

and blood was represented as a Newtonian fluid with a density of 1.0 g/cm³ and viscosity of 

0.04 Poise. For the inflow boundary conditions, a flow waveform obtained from a healthy 

subject was scaled to the area of the inflow artery using a power law [4]. Outflow boundary 

conditions were set as pressure and flow outlets. Two cardiac cycles with 100 time steps per 

cycle, assuming a heart rate of 60 beats per minute were computed and the results of the 

second cycle were used for subsequent hemodynamic characterization.

Next, the hemodynamic and morphological parameters of the aneurysm rupture probability 

model were automatically computed based on the CFD solutions as well as the 3D 

geometries as previously described [10].

Model evaluation

The aneurysm rupture probability model had been developed using logistic group lasso 

regression [10]. To evaluate it, the linear predictors and predicted probabilities of being 

ruptured were computed for the AneuRisk and AneuX IAs (test IAs) based on the model 

coefficients [10]. Subsequently, the model’s discrimination as well as goodness of fit were 

assessed by the area under the receiver operating characteristic (ROC) curve (AUC) and 

2The AneuX dataset was processed under supervision of Vitor Mendes Pereira, Philippe Bijlenga, Rafik Ouared, Norman Juchler, and 
Sven Hirsch. It is maintained within the scope of the SystemsX.ch project AneuX.
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calibration plots. For the latter, a loess smoother with a span parameter of 0.75 was used as 

part of the visualization [1]. Confidence intervals of the AUC were estimated based on 1,000 

bootstrap repetitions. To assess the accuracy of the model in terms of true positive rate 

(TPR), false positive rate (FPR), positive predictive value (PPV or precision), and NPV 

(negative predictive value), a threshold for classification of an IA as ruptured was selected as 

the probability corresponding to the point on the ROC curve with the minimum distance to 

the point (0,1). For all AneuRisk and AneuX cases, information for all variables of the 

model was available (no missing data). All statistical analyses were performed with scripts 

written in the R language [24].

Rupture prediction based on similarities between aneurysms

We compared the accuracy of the rupture model in the external data to a more directly data-

based approach that uses aneurysms from the training cohort with similar characteristics 

compared to the test IAs. For this alternative approach, the rupture status of the test IAs was 

defined as the most frequent rupture status (“majority vote”) of all “similar” aneurysms 

selected from the training data set. Here, aneurysms situated at the same location in the 

cerebral vasculature as well as having comparable values of non-sphericity index (NSI), 

maximum oscillatory shear index (OSImax), and aneurysm size were considered as similar. 

The first three parameters (location, NSI, OSImax) capture anatomic, morphologic, and 

hemodynamic characteristics of the aneurysm and were identified as important variables for 

identifying an aneurysm’s rupture status in our previous study [10]. We further included 

aneurysm size as a selection criterion to identify aneurysms that are at a similar phase of 

their evolution. Starting with a threshold of 5%, aneurysms at the same location and having a 

value of the selected variables within a deviation of this threshold were defined as matching 

cases. If no similar case was identified, the deviation threshold was increased in steps of 5% 

until reaching a maximum of 200% (10%, 15%, 20%, … , 200%). If for a test IA and a 

specific threshold, the number of identified similar ruptured IAs was identical to the number 

of similar unruptured IAs (ties), the rupture status of the test IA was defined as the one of 

the similar case with the closest value of aneurysm size. The scheme of this “similarity-

based approach” is illustrated in Fig. 2.

Results

Model evaluation

When applying the model to the test data (AneuRisk and AneuX combined), the AUC was 

0.82 (mean and 95% bootstrap confidence interval 0.8245, [0.8227, 0.8263], see Fig. 3, left 

for the ROC curve). Evaluated separately in the two test cohorts, the AUC for the AneuRisk 
data was 0.82 and for AneuX 0.86 (mean and confidence intervals of 0.8202 [0.8177, 

0.8227] and 0.8666 [0.8645, 0.8686]). The calibration plot (Fig. 3, right) indicates an 

appropriate goodness of fit of the model both in the training and testing population 

quantified by a calibration slope and intercept of 1.12 and −0.11, respectively, for the testing 

data. Based on the ROC curve, a threshold of 0.316 was selected to classify the IAs of the 

testing population as ruptured. For this threshold, the TPR, FPR, and PPV were 0.77, 0.24, 

and 0.54, respectively (see Tab. 2). The relative number of misclassified IAs was 0.24. When 

applying the threshold that was determined based on the training data to the test data 
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(0.323), the TPR, FPR, and misclassification error were slightly decreased to 0.76, 0.23 and 

0.23, whereas the PPV remained constant at 0.54 (see Tab. 2). The ROC curves, calibration 

plots, and accuracy metrics for the AneuRisk and AneuX data separately are shown in Fig. 1 

and Tab. 1 in the Suppl. Data.

Similar cases based on selected variables

For all 249 IAs of the test cohorts, “similar IAs” were identified in the training population 

within a range of 115% of deviation of the values for aneurysm size, NSI, and OSImax. 

Using the stepwise approach described above (increasing the deviation threshold until 

matching cases are found), on average 1.79 similar IAs in the training cohort per queried IA 

were selected. Based on the majority vote, the rupture status of 186 of the 249 IAs was 

correctly classified (74.7%). The TPR, FPR, and PPV for this approach were 0.55, 0.18, and 

0.52 (see Tab. 2).

Combination of model and similarity based approach

To evaluate whether combining the predictions of the model and the approach based on the 

similar cases could improve the overall accuracy of the predictions, the subset of 176 IAs 

with the same predicted rupture status based on the majority vote of the similar cases and 

classification with the model was further analyzed. Here, for determining the rupture status 

based on the model, the “optimal threshold” determined in the training data of 0.323 was 

used. Of those 176 cases, 152 were correctly classified (86.4%). The TPR, FPR, and PPV 

were 0.79, 0.12, and 0.61 (see Tab. 2).

Discussion

The treatment decision of incidental IAs poses a challenge to physicians and patients since 

the risk of a devastating hemorrhagic stroke needs to be weighed against the risk of 

treatment. A statistical rupture prediction model could potentially support decision making 

for these cases. Recently, we presented a rupture probability model based on a large patient-

cohort including patient-related, hemodynamic, and morphological information [10]. The 

model showed good discrimination and calibration in the training data (internal validation). 

Our current study assessed the model’s performance with data of aneurysms that have not 

been used for model training (external validation). The results showed a good predictive 

performance of the model in the external data, indicating that the model remains valid with 

new data.

Model performance

In this external validation, the model’s discrimination in terms of AUC was reduced to 0.82 

compared to the AUC of 0.86 in the training data. The AUC was only slightly lower than the 

AUC in the training data after correction for the estimated optimism of 0.84, indicating 

reasonable optimism estimation. The further reduction of the AUC could potentially be 

explained by differences in the patient populations in the training compared to the test data. 

Interestingly, the AUC was higher when applying the model to the AneuX data (AUC=0.86) 

compared to both the AneuRisk (0.82) and the combined data (0.82). The model’s 
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calibration was also only slightly poorer for the test data as illustrated by the larger deviation 

of the loess smoother from the 45° line in the calibration plot (see Fig. 3).

With respect to the model’s accuracy, when using the “optimal threshold” based on the ROC 

curve of the test data for classifying an IA as ruptured or unruptured, the TPR remained the 

same compared to the TPR for the training data (0.77) whereas the PPV slightly decreased 

and the FPR and misclassification error increased. Since for a new case it would not be 

possible to determine an “optimal threshold” based on the new case’s “population”, we also 

applied the threshold computed based on the training data (0.323) to the test data. The 

accuracy measures remained mainly the same, indicating that this threshold could also be 

applied for classifying new IAs. Overall, the presented measures indicated a reasonable 

accuracy of the model. At the same time, it is important to bear in mind that the predicted 

probability at which a physician decides to treat the patient depends on various factors 

related to the patient and treating physician. Therefore, accuracy measures based on fixed 

thresholds (like the “optimal” one based on the ROC curve) provide only approximate 

information on the model’s predictive performance in terms of (mis-)classification of cases 

in a clinical setting.

The PHASES score [13] uses patient specific information, aneurysm size, and aneurysm 

location to estimate a patient’s 5-year aneurysm rupture risk. Its internal and external 

validation resulted in a AUCs of 0.82 and 0.66, respectively [2, 13]. Our results indicate that 

incorporating hemodynamic and morphological information can potentially improve 

aneurysm risk assessment. The lack of some patient-related information used in the 

PHASES score (population, hypertension, and earlier SAH from another aneurysm) for the 

data used in the presented study did not allow for a direct comparison of the performances of 

our model and the PHASES score, which is therefore planned for future work.

To enable and encourage an evaluation of our model by other research groups as well as a 

comparison of the results with the findings presented here, this study follows the TRIPOD 

statement [9].

Data-driven risk assessment

Our results indicate that applying the statistical model can potentially provide guidance for 

physicians who need to decide whether to treat an aneurysm or conservatively observe it. 

Nevertheless, the interpretation of such a model can be difficult. Therefore, we implemented 

a datadriven “similarity based” approach to provide visual support for interpreting the 

model’s results as well as to compare the performance of this approach with the 

performance of the model. For each test IA, we identified IAs in our (training) data with the 

same location and similar values of NSI, OSImax, and aneurysm size. Our results showed 

that when using this approach for rupture prediction, its performance was only slightly 

worse compared to applying the rupture probability model in terms of the misclassification 

error (0.25 vs. 0.24). This indicates that the important variables as identified based on cross-

validation in the training data can be used to identify similar aneurysms with identical 

rupture status.
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A total of 176 IAs were classified as either ruptured or unruptured by both the statistical 

model and the similarity-based approach. Of those 176 cases, only 24 were misclassified 

(13.64%, see Tab. 2) compared to 24% of misclassification obtained for all the 249 cases 

when using the model alone. Hence, the similarity-based approach could be used to provide 

additional information about a case and facilitate the interpretation of the given parameters 

by visualizing the identified similar IA.

Of the 24 misclassified cases, 7 aneurysms were ruptured, but misclassified as unruptured. 

In these cases, the model clearly failed to identify the correct rupture status. The remaining 

17 cases were unruptured, but misclassified as ruptured. It is possible that these unruptured 

aneurysms were at higher risk of future rupture, but no data was available to evaluate this 

hypothesis. Two examples of misclassified IAs are illustrated in Fig. 2 and Tab. 2 in the 

Suppl. Data.

The shape and hemodynamic environment of four example IAs from the AneuRisk and 

AneuX data and their identified similar IAs from the training population are illustrated in 

Fig. 4 and 5. The IAs in Fig. 4 are ruptured and have – in accordance with their rupture 

status – high predicted probabilities of being ruptured (>91% for the test cases, >89% for the 

corresponding similar IAs). Furthermore, they are similar in shape and exposed to a 

comparable flow environment (indicated by their wall shear stress distribution and stream 

lines). This also holds for the four IAs illustrated in Fig. 5, which are unruptured aneurysms 

with low predicted probabilities (<3% for the test cases, <8% for the corresponding training 

IAs).

For the classification of new IAs purely using the similarity-based approach, the TPR was 

relatively low (0.55). Moreover, the identification of similar cases might not be possible for 

all future IAs given their specific shape, size or hemodynamic environment. Therefore, we 

suggest using primarily the statistical rupture probability model for rupture risk assessment 

and the identification of similar cases to obtain additional information (e.g. confirm a high 

rupture risk if all the similar IAs are ruptured) as well as to illustrate the case and facilitate 

the interpretation of the predicted risk.

Clinical considerations

The characterization of an IA in terms of shape and hemodynamic environment based on 

angiographic images requires as a first step the segmentation of the IA and the surrounding 

vasculature in the image. In the presented study, the segmentation of the IAs from the 

external populations (AneuRisk and AneuX) was performed by independent researchers 

using different segmentation tools compared to the segmentation of the training data. The 

good performance of our model in the two test cohorts indicates that the results of applying 

the model do not strongly depend on the image segmentation step. This aspect is important 

since image segmentation typically involves manual work and hence (depending on the 

amount of required manual work by the specific tool/algorithm) is to some extent user-

dependent. The subsequent CFD simulations necessary for a hemodynamic characterization 

can be largely automatized. Hence, our results suggest that the model could be applied in a 

clinical setting even if segmentation requires some manual input and is performed by 

different users.
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Particularly for follow-up observations, IAs are routinely assessed by means of MR 

angiography (MRA) or CT angiography (CTA). Whereas the training and test datasets for 

the presented study were based on 3DRA data, segmentation of IAs from CTA and MRA 

images is feasible as well [37, 38]. Hence, the model could also be applied for those cases. 

Moreover, fully automated image segmentation for IA assessment will likely be possible in 

future, thus facilitating the model’s application in a clinical setting [38].

When applying the statistical model for aneurysm risk assessment in clinical practice, it is 

important to consider that the current model was developed using cross-sectional data. 

Therefore, it gives the probability of being ruptured of a given aneurysm. However, based on 

the assumption that high risk aneurysms resemble those that have already ruptured [8], this 

model could also be useful for aneurysm rupture risk assessment. To evaluate the validity of 

the model for this application, the assessment of the model’s performance with longitudinal 

data is an essential next step and is planned for future work.

Current treatment decisions of incidental aneurysms are largely influenced by the aneurysm 

size [28, 29]. Whereas small aneurysms (< 5mm) are candidates for conservative follow-up 

observations, larger aneurysms often get treated [12]. Our statistical model might therefore 

be of use especially for assessment of small aneurysms. The model was developed using 

aneurysms within a large size range (1.1 mm – 39.3 mm). A model considering only small 

aneurysms could potentially improve risk assessment for this subgroup of IAs. At the same 

time, the “general model” could be applied to larger aneurysms as well, aiming at 

identifying larger low-risk aneurysms that do not require treatment and thus potentially 

reducing overtreatment [15].

Besides the parameters included in the aneurysm rupture probability model, several other 

risk factors have been associated with aneurysm rupture. As external risk factors, smoking, 

hypertension, and a previous SAH have been related to an increased aneurysm rupture risk 

[13, 19–21]. Considering these factors could further improve the risk assessment. Moreover, 

the presence of multiple aneurysms is often considered as a risk factor, although currently 

this association is not clear in the literature [16]. Irregular shape and particularly the 

presence of blebs are related to a higher risk of rupture [22]. While the evaluated model does 

not use the presence of blebs as a parameter, the combination of various shape indexes 

provides information about the irregularity of the aneurysm shape and potentially also 

indirectly about the presence of blebs.

Finally, it is important to mention that remodeling of the aneurysm wall eventually leads to 

its rupture. Especially the infiltration of the wall with inflammatory cells, particularly 

macrophages, seems to play an important role in aneurysm growth and rupture [7, 30]. 

Those aspects were not directly included in the evaluated risk assessment tool and should be 

taken into account when assessing an aneurysm’s rupture risk. At the same time, flow 

parameters are associated with changes in the vessel wall [5]. Besides, the presence of blebs 

might provide information about the wall properties [6]. Hence, aneurysm wall properties 

could be reflected to some extent in the computed hemodynamic and morphological 

parameters.
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Limitations

In the present study, we used aneurysm data collected from two European hospitals to 

evaluate our model that had been developed using data mainly from hospitals in the US. 

Some studies indicate that Finish and Japanese populations have a higher risk of IA rupture 

compared to other populations [13, 35]. Consequently, the model’s performance could be 

different in test data coming from these two populations. Future work therefore will aim at 

evaluating the model with such data.

The external data that were used for model evaluation are subject to the same selection bias 

as for the training population [10]. Only patients that underwent cerebral angiography for 

aneurysm assessment were considered, whereas patients that deceased before reaching the 

hospital and those who only underwent CT or MR angiography could not be included in this 

study. It is planned to extend the database and thus the population for model training based 

on MRA and CTA data in future to address this limitation.

Conclusion

The developed aneurysm rupture probability model demonstrated a good predictive 

performance in two external patient cohorts, indicating the potential for its application to 

new clinical aneurysm cases. The model’s prediction and interpretation could further be 

improved by implementing an approach based on identifying similar IAs from the training 

database. Future work will include a validation of the model with longitudinal data and 

translating the risk assessment approach to the clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Distribution ruptured (dark colors) and unruptured (light colors) aneurysms by location and 

patient cohort. To facilitate a comparison between the different cohorts, all absolute numbers 

of aneurysms per location were normalized by the total number of aneurysms of the 

respective cohort. The shown percentages refer to the rupture rates for each location. For the 

definition of the aneurysm locations see the description of the model’s parameters in [7]
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Fig. 2. 
Scheme of the similarity-based approach for estimating an aneurysm’s rupture status. For a 

new case, aneurysms from our database with the same location and values of aneurysm size 

(Asize), maximum OSI (OSImax) and non-sphericity index (NSI) within a five percent 

range of the values of the new case were selected. If no aneurysms fulfilling these criteria 

were identified, the range was increased by five percentage points until at least one 

aneurysm was found or the percent range reached 200 %. If more than one aneurysm was 

identified for a specific range, the majority vote was taken. In case of the same number of 

ruptured and unruptured IAs, the rupture status of the aneurysm with the closest aneurysm 

size was selected
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Fig. 3. 
ROC-curves and calibration plots for the training data (solid line) and combined AneuX and 

AneuRisk data (“test”, dotted line). (Left) ROC curves visualize the discriminative ability of 

the model. The filled circles on the ROC curve indicate the values corresponding to the 

“optimal threshold” determined for the respective data. (Right) Calibration plots allow to 

assess the goodness-of-fit of the model. The circles at the top and bottom show the observed 

data. The triangles and squares show the observed outcomes of the training and test 

populations grouped by deciles, which are also represented by the loess smoother with the 

solid and dotted line. For a perfectly calibrated fit, all triangles/squares and the loess 

smoother would lie on the 45°-line
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Fig. 4. 
Wall shear stress distribution (top panel) and streamlines (bottom) at half of the cardiac 

cycle of four ruptured IAs with high probabilities of being ruptured based on the model. The 

shown IAs from training data were identified as similar cases for the respective AneuRisk or 

AneuX case. The predicted probabilities and values of selected variables for these cases are 

shown in Tab. 3
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Fig. 5. 
Wall shear stress distribution (top panel) and streamlines (bottom) at half of the cardiac 

cycle of four unruptured IAs with low probabilities of being ruptured based on the model. 

The shown IAs from training data were identified as similar cases for the respective 

AneuRisk or AneuX case. The predicted probabilities and values of selected variables for 

these cases are shown in Tab. 3
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Table 1

Comparison of patient cohorts used for model training and model evaluation. ACA=Anterior cerebral artery, 

ACOM=anterior communicating artery, BA=basilar artery, ICA=internal carotid artery, MCA=middle cerebral 

artery, PCOM=posterior communicating artery, VA=vertebral artery; R and U refer to the number of ruptured 

and unruptured aneurysms, respectively

Training population AneuRisk AneuX

Number of patients 1061 99 104

Number of aneurysms (ruptured/unruptured) 1631 (492R/1139U) 113 (44R/69U) 136 (22R/114U)

Patient age (mean ± sd) (of 1065 patients with known age) 56.25 ± 13.77 54.36 ± 13.58 54.99 ± 13.70

Patients with multiple aneurysms 328 13 22

Number of patients with SAH 490 44 22

Distribution by location ACA 57 (3.49%) 20R/37U 1 (0.89%) 1R/0U 4 (2.94%) 1R/3U

ACOM 226 (13.86%) 148R/78U  23 (20.35%) 17R/6U 22 (16.18%) 6R/16U

BA 106 (6.50%) 35R/71U 7 (6.19%) 4R/3U  7 (5.15%) 3R/4U

ICA 636 (38.99%) 64R/572U 36 (31.86%) 3R/33U 41 (30.15%) 2R/39U

MCA 310 (19.01%) 82R/228U 28 (24.78%) 9R/19U  43 (31.62%) 5R/38U

PCOM 260 (15.94%) 127R/133U 18 (15.93%) 10R/8U 15 (11.03%) 4R/11U

VA 36 (2.21%) 16R/20U 0 (0%) 0R/0U  4 (2.94%) 1R/3U

Gender 802 F, 259 M 62F, 37M 82F, 22M
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Table 2

Accuracy measures for the model applied to the training and testing populations for given threshold 

(thresholds marked with an asterisk indicate are “optimal threshold” based on the ROC curve of the given 

dataset) as well as for the similarity-based approach. TPR=ratio of true to all positives (=sensitivity), FPR = 

ratio of false positives to all negatives (= 1-specificity), PPV (positive predictive value=precision) = ratio of 

true positives to number of true and false positives, NPV (negative predictive value) = ratio of true negatives to 

number of true and false negatives, misclassification error = number of incorrect classifications divided by the 

sample size

Data Threshold TPR FPR PPV NPV Misclassification error

Model

Training 0.323* 0.77 0.21 0.62 0.89 0.21

Test 0.316* 0.77 0.24 0.54 0.90 0.24

Test 0.323 0.76 0.23 0.54 0.90 0.23

Similar Cases Test - 0.55 0.18 0.52 0.83 0.25

Model + Similar Cases 176 IAs of test population 0.323 0.79 0.12 0.61 0.95 0.14
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Table 3

Values of selected variables and predicted probabilities of being ruptured based on the statistical model for the 

IAs illustrated in Fig. 4 and 5. ACOM = anterior communicating artery, ICACAV = cavernous sinus of the 

internal carotid artery, ICA-OPH = ophthalmic segment of the internal carotid artery

Case Population Asize [cm] Location NSI OSImax Pred. Prob Rupture Status

a Test 1.0383 ACOM 0.3924 0.3391 0.9121 R

b Training 0.9753 ACOM 0.3471 0.3752 0.8752 R

c Test 1.2542 ACOM 0.3574 0.2705 0.9126 R

d Training 0.9589 ACOM 0.3484 0.2694 0.9122 R

e Test 0.3302 ICA-CAV 0.1871 0.0372 0.0227 U

f Training 0.2965 ICA-CAV 0.2097 0.0373 0.0738 U

g Test 1.6820 ICA-OPH 0.1871 0.4206 0.0154 U

h Training 1.5441 ICA-OPH 0.1947 0.4021 0.0562 U
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